Porcine Intraventricular Cannulation
Validating a Strategy for Gene Delivery to the Central Nervous System

Disclosures and Conflicts

- Nicholas Boulis, MD
 - Medtronic,
 - Ceregene,
 - Genzyme,
 - Neuralstem

Introduction

I – Background - Gene Therapy Delivery Routes
a – Retrograde Axonal Transport
b – Direct Parenchymal Microinjection
 Intraspinal
 Intracranial
c – Intrathecal Injection
d – Intraventricular Injection...

II – Porcine Anatomic Evaluation
a – Necropy Study
b – Survival Study
c – Results to Date

III – Near Term Experimental Design

IV – Areas for Future Study

Background

Ia – Retrograde Axonal Transport

Retrograde Viral Delivery of IGF-1 Prolongs Survival in a Mouse ALS Model

Science Vol. 301 8 August 2003

Background

Ib – Direct Parenchymal Microinjection (spinal)

Background

Ib – Direct Parenchymal Microinjection (cranial)

Real-time MR Imaging With Gadoteridol Predicts Distribution of Transgenes After Convection-enhanced Delivery of AAV2 Vectors

Nature Vol. 11, 1499-1507 Aug 2011

Jonathan Riley, MD
Emory University Department of Neurological Surgery

GNS – Annual Fall Meeting - Nov, 2012
Background

Ic – Intrathecal Injection

Diffuse Vector Delivery is Achievable through Intrathecal Delivery

Background

Id – Intraventricular Delivery

Adeno-Associated Virus Serotype 9 Transduction in the Central Nervous System of Nonhuman Primates

1) Direct Delivery is more effective

2) Direct Delivery has fewer off-target effects

Background

Id – Intraventricular Delivery (cont)

Efficacy of Reductive Ventricular Osmotherapy in a Swine Model of Traumatic Brain Injury

II – Porcine Anatomic Evaluation

Necropsy Study – Defining an Approach

II – Porcine Anatomic Evaluation

Survival Study – Exposure and Approach

II – Porcine Anatomic Evaluation

Survival Study – Passing the Catheter

A better way to cannulate the swine ventricular system?
II – Porcine Anatomic Evaluation

Survival Study – Localization Confirmation

TABLE 1. Procedural Outcomes

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Fluoroscopy use / findings</th>
<th>Cannula Passes Required</th>
<th>CSF Return</th>
<th>Tarlov Score</th>
<th>Post Operative Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>no</td>
<td>1</td>
<td>Yes</td>
<td>4</td>
<td>one seizure</td>
</tr>
<tr>
<td>2</td>
<td>no</td>
<td>1</td>
<td>Yes</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>yes, ventricle visible</td>
<td>1</td>
<td>Yes</td>
<td>4</td>
<td>neurologically depressed, ataxia</td>
</tr>
<tr>
<td>4</td>
<td>yes, inconclusive</td>
<td>3</td>
<td>Yes</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Lessons from Anatomic Studies:

Optimal Trajectory - 5mm lateral to midline, posterior to frontal sinus, shallow trajectory, no to minimal mediolateral angulation

III – Near Term Experimental Design

Dose Escalation Series

- Volume Dose Escalation Series
- Constant Rate of Infusion

To Assess

- Behavioral Outcomes –
 - With intraventricular cannulation
 - With dose escalation
 - Define a maximum tolerated dose
- Biodistribution with dose escalation

Considerations

- Will drain equivalent amount of CSF to added volume prior to infusion
- Leave catheter for 10 minutes prior to removal at infusion completion
- Role for fluoroscopy:
 - a) Identification of Superoposterior border of frontal sinus
 - b) Small bolus of contrast to confirm intraventricular localization

IV – Areas for Future Consideration

- Delineation of Maximum Tolerated Dose
- Assessment of Alternate Infusion Parameters
 - Rate of Infusion
 - Vector Concentration
- Evaluation of Agents to increase ependymal permeability
- Imaging Co-injectables
 - MR or CT-compatible co-injectates to evaluate intraventricular spread
 - Validation of co-injectate spread with vector expression
- Possible Need for bilateral cannulation
- Alteration in rate of delivery or volume of delivery
- Validation of co-injectate biodistribution for translational purposes

What’s New is Old and Old is New...

Acknowledgements

Boulis Laboratory
Thais Federici, PhD
Carl V. Hurtig, BS
Natalia Grin, DVM
Jason Lamanna, BS

Neurosurgery Residents
Jason Taub, MD
Griffin Baum, MD