GIANT THROMBOSED ANEURYSM WITH INTRAMURAL ARTERY AND LOW-FLOW AV FISTULA
Basheer A. Shakir MD
Cargill H. Alleyne, Jr. MD
Department of Neurosurgery
Georgia Health Sciences University

Presentation
- 36 year-old female presented to ED after seizure at home
- Followed for two years prior by neurologists for headaches, presumed to be migraines

Imaging
- Initial imaging showed what appeared to be cyst
- Later MRI/MRA revealed aneurysm
- Maintained on anticonvulsants and angiography confirmed giant left thrombosed MCA aneurysm
Patient did well postoperatively, returned a few weeks later with improved headache.

Giant Aneurysms

- 5-7% of intracranial aneurysms (>2.5 cm)
- Saccular or fusiform
 - Giant serpentine: partially thrombosed aneurysms with extremely tortuous vascular channels that can develop from saccular or fusiform
Clinical Presentation

- Severe headache
- SAH
- Mimics tumor, compression of CN’s, gradual neurological deterioration
- TIAs, strokes
- Seizures

Surgery of Giant Aneurysms

- Frequently difficult to dissect neck
- Dome can be in deep brain structures
- Cutting a portion of the sac free – easier dissection
- Wide neck as aneurysm grows – clip may slip into parent vessel

Natural History

- Growth from thrombus formation or slow expansion of aneurysmal lumen
- Sometimes entirely occluded on angiogram
- Possible thromboembolism into parent vessel
- Aggressive management justified by death within few years from rupture or ischemia

Natural History

- Angiographic lumen can change from formation or resolution of thrombus
- Giant aneurysms can also grow by:
 - Intramural hemorrhage
 - Hemorrhage between wall and old luminal thrombus

Natural History

- Totally thrombosed aneurysms can grow
 - Growth of a giant posterior fossa aneurysm over 4 years. MR showed onion-skin-like structure within a calcified wall.
 - Recent clot formation suggested growth was by recurrent intramural hemorrhage rather than intraluminal thrombus

Natural History

- Hypothesis:
 - Subadventitial rupture of vasa vasorum cause hemorrhagic enlargement of giant aneurysms
 - There are usually no vasa vasorum in the intracranial arteries of the young and healthy but…
 - Giant intracranial aneurysms can have intramural vasculature
Implications for treatment

- If rupture of the vasa vasorum is the underlying cause of giant aneurysm growth then...
 - Endovascular therapy may not be successful since
 - Only surgical trapping or excision excludes a vasa vasorum connection between parent artery wall and aneurysm neck

Conclusions

- Giant thrombosed aneurysms represent a distinct subgroup of aneurysms with unique natural history
- Our case shows a graphic example of 3 types of associated arteries and a mechanism of possible aneurysm growth despite complete thrombosis